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A General Algorithm for Computing the
Bidimensional Spectral Green’s Dyad in
Multilayered Complex Bianisotropic Media:
The Equivalent Boundary Method
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Abstract —A systematic method to obtain the bidimensional
spectral dyadic Green’s function (BSDGF) of stratified planar
structures with arbitrary complex bianisotropic layers is devel-
oped. The method is based on the uniqueness and equivalence
electromagnetic theorems. A first-order partial differential for-
mulation for the electromagnetic field inside each layer is used.
An explicit algorithm makes it possible to go from the single-layer
formulas to the general n-layer matrix formulation. The pertur-
bative nature of the method provides good numerical efficiency
and straightforward determination of asymptotic behavior.

I. INTRODUCTION

LANAR layered structures have played a significant

role in microwave technology. This role is increasing
day by day thanks to the investigations of new configura-
tions (including different geometries or anisotropic sub-
strates) as well as to advances in material technology for
monolitic microwave integrated circuits (MMIC’s). The
increasing capacity and complexity of these MMIC’s re-
quire that the passive components be versatile [1]. Printed
antenna problems involving stratified complex substrates
have also been a matter of particular attention in recent
years [2]. So, for design applications, it should be very
interesting to contemplate the possibility of treating a
very general planar system such as that shown in Fig. 1.
This structure supports lossless and infinitesimally thick
metallizations over several interfaces, and every layer can
present diclectric and /or magnetic anisotropy including
losses. The inclusion of very general anisotropic multilay-
ered substrate is justified because of the intrinsic or
extrinsic anisotropy of many of materials used as sub-
strates. The intrinsic anisotropy relates to the anisotropic
behavior of certain dielectric crystals (in the millimeter
and microwave frequency range), and the extrinsic
anisotropy is acquired when the optical activity is taken
into account or when semiconductors as well as ferrites
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Fig. 1. Transverse section of the multilayered planar structure under

study.

are biased by means of an external and static magnetic
field. It is very well known that an arbitrary orientation of
this biasing field makes all the elements of the dielectric
permittivity or/and magnetic permeability distinct from
ZErO0.

The analysis of the electromagnetic field problem in
the configuration depicted in Fig. 1 becomes simpler if
the Fourier transformed domain (FTD)—or spectral do-
main—is used. This is mainly due to the fact that Green’s
function convolution integrals or series are turned into
algebraic products. Moreover, the spectral dyadic Green’s
function (SDGF) and the bidimensional spectral dyadic
Green’s function (BSDGF) can be obtained following a
straightforward systematic procedure, as will be shown in
this work. If vectors [J] and [E] are assumed to be the
(x,z) spectral components of the surface current and the
electric ficld on every metallized interface, the [G] matrix
(i.e., BSDGF) will be here defined as [E]=[G]-[J] and
the [ L] matrix (i.e., the inverse of the BSDGF) as [J]=
[L]-[E]. Once the BSDGF is determined, we can follow
several methods (i.e., moment or iterative methods) to
state the nondeterministic dispersion relation for trans-
mission lines or the deterministic problem of the radia-
tion pattern for antennas. The main purpose of this paper
is to develop a general method (namely, the equivalent
boundary method, EBM) to determine the BSDGF for
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the general configuration of Fig. 1. The application of the
BSDGF to the analysis of particular structures and its
numerical treatment will be presented in future works,
Nevertheless some results are presented now for purposes
of comparison and in order to show the feasibility of the
method.

A large number of works can be found in the literature
dealing with the SDGF and BSDGF. We can highlight
the transverse transmission line method (TTL), proposed
in [3], in which an isotropic dielectric medium is analyzed
based upon the decomposition of fields into transverse
TE and TM modes. This method can be easily extended

to all the configurations which provide for two decoupled -

equations relating current sources and fields: one for
transverse TE fields and another for transverse TM fields.
A uniaxial anisotropic dielectric with its optical axis per-
pendicular to the interfaces fulfills this condition [4]. The
studies [5], [6], and [7] follow partly this TE and TM (or
LSE and LSM) decomposition. This scheme is also fol-
lowed in [8] to obtain the BSDGF when the distribution
of electrical sources in the isotropic dielectric is tridimen-
sional. It is necessary to use a different approach in order
to analyze more general substrates such as uniaxial and
biaxial dielectric layers of arbitrary orientation, magne-
tized ferrites and semiconductors, and bianisotropic me-
dia. Most methods dealing with these media are based
upon the transverse propagation matrix scheme [9]-[11].
The method proposed in [9] has been found to be the
most general because it makes it possible to study config-
urations with bianisotropic media. Nevertheless, there is
no simple way to build up a general transverse propaga-
tion matrix algorithm to analyze general multilayered,
multiconductor structures.

The equivalent boundary method (EBM), which is ex-
plained in this work, is a generalization of the method
proposed by certain of the authors in [12] to obtain the
SDGF. It is quite different from the TTL method and the
propagation matrix method. The EBM is able to deal with
any number of layers and any kind of linear substrate
(from the simplest isotropic dielectric to more general
bianisotropic lossy media). It will be shown that this
method leads to a compact algorithm very suitable for
programming. The algorithm also shows very stable nu-
merical behavior.

The EBM is partly based on the equivalence and
uniqueness theorems for electromagnetic fields [12]. One
of the main features of the EBM is that its objective is to
obtain not the BSDGF but its inverse. This provides two
important consequences in relation to the electromag-
netic theorems mentioned above. First, the inverse of the
BSGDF will be a .block tridiagonal matrix. This fact,
together with its possible symmetry properties, can sub-
stantially reduce the computation time necessary to ob-
tain this matrix when metallizations on several interfaces
are involved. Second, it makes possible the reduction of
the multilayer problem to a chain of much simpler prob-
lems of just one layer. (In the quasi-TEM case, a very
similar approach can be used to determine the spectral
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Green’s function [18]-[20].) Some works, such as [13]-16],
analyze this one-layer problem. In this work, a (4x4)
matrix technique is used to solve the involved partial
differential equations. This technique was proposed in
[17] and adapted to the FTD in [9].

II. BIDIMENSIONAL SPECTRAL DYADIC
GREEN’S FUNCTION

In this section, we will develop a method to obtain the
BSDGEF for the general system depicted in Fig. 1. The [ L]
matrix will be expressed in terms of (2X2) matrices
related to some single-layer problems which will be unam-
biguously formulated. Although the main features of this
procedure were developed in [12] by some of the present
authors, a brief exposition is necessary here for a good
understanding of the method. The system depicted in Fig.
1 is composed by N bianisotropic layers with N —1 inter-
faces and upper and lower boundary electric walls. Every
layer shows a linear constitutive relation between the
D, B and E, H vectors, which will be characterized by the
(6x6) [M], matrix:

[e].
[o'],

(o],

(], )

[M]i:[

— ’ seaq!!
(m;;=m, +jm).

I

This tensor is composed of four (3 x3) tensors: the elec-
tric permittivity tensor [e];, the magnetic permeability
tensor [u],, and the optical activity tensors [p], and [p'],.
M of the N —1 interfaces show metallizations (references
to any layer or interface will be denoted by lowercase
subscripts and references to metallized interfaces will be
denoted by uppercase subscripts). It should be noted that
this structure is invariant when a translation is carried out
in the (x—2z) plane. Thus, the spatial dyadic Green's
function will show the following dependence with respect
to variables x and z: [G(x,x',y,y,z, 2 ) =[G(x — x',
y,¥',z — z')] and hence the convolution products involv-
ing this function are turned into algebraic products in the
Fourier domain.

The uniqueness theorem for the electromagnetic field
[21] tell us that the electric field at any point within a
given boundary is completely known in terms of the
electric field distribution on that boundary and the sources
within it. Hence, in order to analyze the general configu-
ration of Fig. 1, we now consider just a part of this, which
is shown in Fig. 2. This is made because the above
theorem allows us to substitute all the effects of the rest
of the structure by knowing the electric field distribution
on the external metallized interfaces. From the applica-
tion of the uniqueness theorem to the configuration of
Fig. 2 and the linear constitutive relations of the sub-
strates, it follows that the electric field at any point
between the (K —1) and (K + 1) metallized interfaces is
certainly determined in terms of the transverse electric
fields at these interfaces, E, x_; and E, g, and the free
current sources on the metallized interface, Jy.

t
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Fig. 2. Transverse partial view of Fig. 1 including just three metallized
interfaces.

We can also make use of the equivalence theorem [21]
to turn the electric boundary conditions at the (K-1)
and (K +1) interfaces into other equivalent boundary
conditions. These equivalent boundary conditions are set
up by placing perfect conducting plates at the (K —1) and
(K +1) interfaces and, on top of them, two sheets of
fictitious magnetic current M, =E, , Xn;, (L=K-1,
K +1) [21]. The relation between E, p and the sources
M, and J, must show the form of a sum of convolution
products [12] for linear media. If M, is substituted in
terms of E, ;, we arrive at the following expression:

Et,K(x’Z’y)zf_ooj; [F(x—x@z-z’,y)]KK
Je (X', 2, y)dx' d7’

+f f [D(x—x',z~7 y)]KK 1

— Y —

E, x (x',2',y)dx' dz’

+ffw[j;[D(x -x',z-2z, y)]K,K+1

E, (o (x',2',y)dx' dz’ (2)
LTIl [L1e (0]
J> [L] [L]n [Llxs
S| 0] [Ll. [Lls
f4 [0] [0] [L]s
_ i | Llor fo1 o]

where [Flg x, [Dlg 1, and [Dlg ., are dyads which
depend only on the dimensions and characteristics of the
structure. Note that in (2), all the sources above the
(K +1) interface and below the (K —1) interface have
been replaced by equivalent fields (E, x,; and E, (_,) at
these interfaces. The systematic application of this prop-

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 39, NO. 9, SEPTEMBER 1991

erty of the electromagnetic field in linear media consti-
tutes the essence of the EBM.

The above expression suggests the use of the FTD in
order to achieve an algebraic expression. The two-dimen-
sional Fourier transform, i.e.,

flkekon)= [ [ f(x,2,9)e% D drdz (3)

applied to the electromagnetic fields can be interpreted
as the decomposition of these fields into propagating
fields with a transverse propagation vector k, =(k,,k,)"
(the superscript T denoting transpose). If expression (2) is
translated to the FTD via (3) and some algebraic manipu-
lations are carried out on the resulting algebraic vector
equation, we will be able to write the following expression
for the FTD free current source vector on the Kth
metallized interface:

Et,K—l(kx’kz7y)
Et,K(kx’kz’ y)

Et,K+1(kx7kz’y)
(4)

jK(kxakz:y) = [L(kx:kz:Y)]K,K—l'
+[L(kx,kz’y)]1<,1<'

+ [L(kx’kwy)]K,KH'

[L],, U=K,]=K-1,K,K +1) being (2X2) matrices.
The effect of the rest of the electric fields is taken into
account by means of the other relations analogous to (4)
with K =1 to M.

The above expression holds a physical interpretation
for the [L]; ; matrices since these matrices relate the
transverse free current source J; on the Ith interface to
the transverse electric field E on the Jth interface when
the other two interfaces are assumed to be electric walls.
This fact is depicted in Fig. 3.

If we now express relation (4) over all the metallized
interfaces, we arrive at

[0 o) [ e |
[O] [0] Et2
(L], o1 || £,
[L]sy [0] Et . ()
(0] ] | 5|

Note the block tridiagonal nature of the [L1(2M X2M)
matrix.

Equations (4) and (5) do not show a direct coupling
between (Ji) and (E,;) for |L— K|>1. Therefore,
changes in the field at the (X +2) interface, for example,
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Fig. 3. Configurations associated with (a) [L]x x, (®) [L]g g1, and
©[L)g k41

do not have any effect on (J), provided that (E.,,)
remains constant, i.e., prqvided that (J, 1) changes in the
exact amount to leave (E, ) unchanged. This is not a
surprising fact since it is always possible to introduce a
current density (Jy. ;) at the (K +1) interface to hold the
field (E, x.,) unchanged at this interface, regardless of
the fields and sources above that interface (equivalence
theorem, [21]).

If we are dealing just with slotlike structures, the re-
quired matrix is directly the [ L] matrix. When other types
of structures are analyzed, [G] being the required matrix
now, it will be necessary to invert the [ L] matrix. Never-
theless, on the one hand there are efficient computing
methods to invert tridiagonal matrices; on the other, the
computation of the [L]; ; matrices involves only calculus
concerning a minor number of layers (see Fig. 3) than the
original structure.

It should be noted that closed structures with rectangu-
lar boundary conditions could also be treated by using the
FTD techniques (together with the BSDGF shown in (5))
if this closed structure could be viewed as one period of a
bidimensional or tridimensional periodic configuration.
Fourier integral transforms should be also converted into
Fourier series transforms adapted to the new lateral
boundary conditions in the problem.

This treatment is possible in boxed structures if lateral
metallic sidewalls are perpendicular either to a main axis
of anisotropy, for intrinsic anisotropic dielectric layers, or
to the external biasing magnetization field, for gyrotropic
layers. Nevertheless, from a practical standpoint, all kinds
of layered boxed structures can be analyzed by using FTD
techniques if the sidewall effects are assumed to be ne-
glected.

From (5), we can see that the zeros (k. k,) of the
determinant of the [L] matrix are associated with the
transverse propagation vectors of the different propaga-
tion modes in the whole structure in Fig. 1, without
metallizations at the internal interfaces. In the same way,
the poles of this determinant are associated with any of
the propagating modes at any of the substructures formed
when the metallized interfaces are whole electric walls.
Propagation vectors in suitable boxed structures form a
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discrete subset of the continuous bidimensional spectrum
associated with the corresponding open structure.

A. Computation of L], ,

.As mentioned in the previous section, the computation
of the [L]; , matrices is related to the analysis of the
configurations drawn in Fig. 3. These structures will be
the subject of this subsection. If we now follow an analo-
gous procedure for one of these configurations, as was
followed with the previous general system, this will lead
to the relevant fact that our current problem can be
formulated by means of some new (2x2) [g], ; matrices
which will be associated with problems of just one and
two layers. The analysis of the configurations of Fig. 3,
when the mentioned procedure is carried out [12], is
therefore reduced to the analysis of the simpler two-layer
structure depicted in Fig. 4. The following identity, simi-
lar to (4), is obtained:

Ji= [g]i,i—l'E~t,i—1 +[g]i.i'Et.i +[g]i,i+1'Ez,i+1- (6)

Equation (6) relates the possible free current sources J:
at the ith interface to the transverse electric fields at that
interface and the adjacent ones. We can associate a
physical significance to these [g];, (j=i—1,i,i+1 in a
similar way to that carried out in the preceding section for
the [L] ;,; matrices. By doing this, the problem of the
general system will have been essentially simplified. This
fact will make it possible to deal with the general system
regardless of the number and distribution of layers and
metallizations. The computation of the [g ]i, , matrices will
be the aim of the next section.

In order to compute the [L]; ;, assuming that the lgl;

.have been obtained, we will have to carry out a tedious

but straightforward procedure. This procedure is devel-
oped by using (6) to eliminate the transverse electric field
at the ith interface when this interface is not metallized,
ie., J;= 0. After some algebraic manipulations, the fol-
lowing identity is obtained:

[Llcx=[A)E +[BYE ~[glugne ()
[Llx.x 1 =[CI¥ (8)
[Llx.xe1=[D] (9)

n, being the number of layers underneath the Kth inter-
face, ny =ng —ng_;, and ny =ng,; — ng. The above
identity is built up by means of the following recurrence
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Fig. 5. (a) Two-layer configuration associated with [g], ,. Single-layer

configurations associated with (0) [g], ,+; and ©lel,,—1 "In (b) and (¢),
J, is the surface free current source in the conductors.

algorithm:
(41 =[g)pe1.pe1 (10)
[Blk=lelo-1.q-1 (11)
[Cle=[elpr1 (12)
(D1 =[gls-1.0 (13)
[ATe=[81p s spri=L8)prspeimt (AT ")
- lelewsie (14)
(BT =[&arams—[&lg-rqmrer-((BIY)
Telomrrtas (15)
[c1;<=—[g]p+],p+]_1-([A]§<‘1)‘1-[cn:l (16)
(DY =—[elo vaer([BICY) (D1 (17)
with p=ng_, q=ng, 1, j=2,+, 0, and i=2, -, n.

Note that all the above expressions are made up by means
of algebraic operations of the (2X2) [g], ; matrices. We
can now build the tridiagonal block matrix [ L] of (5) once
all the [L] ;,, matrices are obtained.

B. Reduction to single-layer problem

The computation of the (2X2) [g]; , matrices is better
understood if each matrix can be interpreted as

Jzz[g]i,i—l'Ez,iA'ét,i:o (18)
J,= [g]i,i'E’t,ilE-,v,A:IZ‘,v,H:O (19)
J=18)isr B ili, -0 (20)

Following (18)—(20) we can explicitly depict the structure
associated with each [g], , matrix. Tt can be seen in Fig. 5
that we now have, on the one hand, two problems of one
layer with one electric wall and, on the other hand, one
problem of two layers with two electric walls. However,
the two-layer problem can be decomposed into two prob-
lems of one layer and 'one electric wall, as suggested by
the application of the boundary conditions at the ith
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[Ms
o Hy 0 (hy)
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[M];
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Fig. 6. Single-layer configurations associated with (a) [g"],, and
g 1, 7

interface. So, we can express the free current source at

the ith interface by means of
—[T] ( tl+l(h) t.i(hi)) (21)

with [T]=(_(l) (1)) We can therefore decompose the

[ g],,i matrix into two matrices associated with the single-
layer problem (see Fig. 6) in such a way that

lel.=[e"]..+[g ]. (22)
These matrices can be interpreted as follows:
~ -1 ~
Hoo(h) =171 ([ ) Bl im0 (23)
A, (h)=[T17"([e 1 Eolg, -0 (24)

From (23) and (24), we can see that these [g*],, and
[g~ ], matrices are actually the admittance matrices re-
lating the transverse electric to the magnetic fields at the
ith interface in the structures shown in, respectively, parts
(a) and (b) of Fig. 6.

III. ANALYSIS OF [g], | MATRICES

In this section the computational method for obtaining
the [g], , matrices of the preceding section will be devel-
oped. We will also analyze the properties of these cle-
mentary matrices for the more common cases, in which
the layer is either reciprocal or lossless. Some considera-
tions will be finally made on the main numerical features
of the method proposed here.

A. Computation of [g] Matrices

At this point, it is obvious that all the problems have
been reduced to find the relations between the transverse
electric and magnetic fields in a configuration with just
one complex bianisotropic layer. In order to solve it, we
will follow a (4 x 4) matrix scheme similar to that adapted
to the FTD in [9]. When a time harmonic dependence
exp(jot) of the fields is assumed, we can write the
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second and fourth Maxwell’s equations for the ith layer
as

[#] [0]] |
[0] [2]lisxe |H,
(a1 — 5
o (). —[rl 29
(€], o] lexe |H,
with
i 0 ik -
; e Gy
[Zlaxsn=| —Jk. 0 Jk
d "
_5 —j . 0
—Ex,i(kx7kz7y)_
i Ey,i(kx7kz7y)
E, (kysk.,y)
and
_I_ix,i(klwkz’y)~
ﬁi= ﬁy,t(kx’kz’y)
_Hz,i(kJC?kz?y)_

We can eliminate the y components of the E,,ﬁi fields
by operating in the second and fifth rows of (25) on
account of the algebraic nature of these rows. Once this
has been carried out, the following first-order matrix
equation of rank 4 is obtained:

{[U]%—fw[mi}x,w

with [U] being the (4X4) unity matrix, [Q], the (4X4)
matrix resulting from all the algebraic manipulations, and

X,=[E, E, H, H, . Al the elements of the [Q], ma-
trix are shown in the Appendix for the common case of
dielectric and magnetic anisotropy. In [9] an analogous
matrix is shown for the general case. The solution of (26)

is a vector which can be written as
Xi(y):eXp(jw[Q]zY)'Xo,z (27)
where X

o, is a constant vector to be determined accord-
ing to the boundary conditions and exp(jow[Q];y) is a
(4 X 4) matrix which can be related to the eigenvalues and
eigenvectors of [Q], by means of the Cayley—Hamilton
theorem. As can be noted from (27), we can express the
electromagnetic field at any y plane in terms of the field
at another y’ plane. Thus, we can write at the (i +1) layer
that

X;i1(hipy) = eXp(jw[Q]i+l(hz+1 - hz))'Xi+1(hz)
=[P]i+1 X a(hy) (28)
and from the properties of the exponential matrix that

(26)
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X, o (h)=[R) " X; oA, 1), with (Rl =[PI3}. We
now have to take into account the boundary conditions
for the single-layer configurations of Fig. 5(b) and (c) and
Fig. 6(a) and (b) in order to determine the relation
between currents and fields. In case we are interested in
computing [g*], , (28) can be rewritten as

Et.i+1(hl+1) - [Pll]i+1 [P12]t+1 . Et,t+1(ht)
ﬁt,i+1(hi+l) [P21]l+1 [Pl ﬁt,z+1(hi)_
(29)
where [P, ];,, denotes one of the four (2 2) matrices in

which the (4X4) [P],, , matrix is split. Since E, ,_ (%, )
= ( (see Fig. 6(a)), we obtain

ﬁt,iﬂ(hz) = _{([P12]1+1)_1.[P11]1+1} 'Et,i+1(hi) (30)

and following (22) and (23), [g* ], ; is already determined.
If the necessary operations are carried out for the other
single-layer configurations, we reach

(7). =71 [([R)) " [Rul] (31)
[ ] =—17)[([Pulc) " [Pulss]  (32)
[g)iic=[T)-([Pp)isr)” (33)
[gliioi=—[T]-([Ru]) " (34)

Once these matrices are obtained, we can easily follow
the algorithms shown in (7)-(17) in order to build up the
inverse or the BSDGF.

B. Properties of [g], ; Matrices

Since the complex general problem has been formu-
lated in terms of several simpler single-layer problems, we
¢an now take into account the symmetry properties of the
characteristic tensor of each layer to state the properties
of the (2X2) corresponding [ g], , matrices. We will show
these properties when the involved layers are assumed to
be reciprocal or lossless. For example, in order to find the
properties of the [g] ,_, and [g];,_;, matrices, we will
first analyze an N-layer configuration similar to. that
depicted in Fig. 1. But we now consider that this configu-
ration does not show internal metallized interfaces and
the ith layer is assumed to be reciprocal [22], i.e., [e], =
el [u]; =[p]¥, and [p'], = —[p]’. This case includes the
common intrinsic electric and /or magnetic anisotropy but
not gyrotropic effects. The reciprocity theorem [22] for
such a configuration can be written for two different free
current sources and electric fields inside the ith layer as

[ [ [Hi(r)x E(r) = H(r)x E(r)] dS,
[ )X Br) ~ Br) < Ei()] dSi-

=/Q[E(’)'J'(’)—E’(r)-J(r)] av (35)
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with the surface integrals extended over the ith and
(i —1) interfaces limiting the ith layer and the volume
integral extended over the whole ith layer. We now
choose the same current and electric field of Fig. 5(c) for
J(r) and E(r) and the current and electric field of Fig.
5(b) for the case where the (i + 1) layer is replaced by the
ith layer for J'(r) and E’(r). Taking into account

[p(—kx’ _kz’y)]]T,z

ke k)., =
[p(kesk.s )], [ ok ks )]

the boundary conditions imposed by the electric walls
(E(y=h,)=0, E(y=h,_,)=0), expression (35) be-
comes
| Eedr)-gi(ryds,= [ [ B, i(r)-T i(r)dS,
] —1
(36)

with the integrals extended to all the points at the ith and
(i — 1) interfaces. If the following identity is considered

(f(=kp =k ) =F(f*(x,2,0)} (37

(f* denoting conjugate complex of f and % the Fourier
transform), once Parseval’s theorem is applied to (36), we
obtain

/_Zf_wfm(kmkz, V) Ji(—k,,—k,,y)dk, dk,

=f_°;f_2E~;,i_l(kx,kz,Y)

'J;~1(_kx’_kz?y)dkxdkz' (38)

If the free current sources are now expressed in terms
of the electric field by means of the previously defined
matrices (egs. (18)—(20) and (22)), we will rewrite (38) as

[U]cosh(€,.,y)
[P)1(y)=

+1

[ ] Bk [la(- ke —kow],,
B, _(—ke —k,,y)] dk, dk,
[ k) T2 K= )],
By (= k. —k,, )| dk, dk,
=f_2/i’§t’l—1( —ke = ko) [k, ko )]y,

‘E‘t,l(kxakzsy)] dkx dkz.

The above identity yields that [g(—k,,
[g(kx7kzyy)]i]:1—1'

(39)
- kz’ y)]i——l,i =

[M]l—+115inh(9l+1y)
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When the characteristic tensor [M,] is assumed to be
Hermitian, i.e., for lossless layers, the reciprocity theorem
is not (35) but it is given in [23]. We can follow an
analogous procedure to state the properties of any other
matrices related to the single-layer configurations (any of
these matrices will be generically denote by [p], ,, (j=i—
1,i,i+1)). If this is carried out, we will find that

if the involved medium is reciprocal
(40)
if the involved medium is lossless.

These properties are easily transposed to the [L]; ; and
BSDGF matrices when the substrates involved in the
computation of these matrices show the same properties.
The symmetries provided by these properties can signifi-
cantly reduce the necessary work to compute the BSDGEFE.
It can also be very useful in applications of the BSDGF
which imply numerical integrations.

IV. REesuLTs

A. Theoretical and Numerical Considerations

We are now interested in obtaining [ g]l’ ; matrices in
the simplest case, i.e., the isotropic dielectric layered
configuration. If the present procedure is followed, the
first step to take is the calculus of the exponential matrix
exp(jwlQ],,;¥). It can be observed in the Appendix for
this simple case that

[P]i+1()’) = eXP(fw[Q];+1Y),

[0]
[Q21]i+1

with
[Q12])i1

[0] (41)

[Q]i+1=

@4 x4)

The presence of these two zero submatrices in [Q];
makes it very easy to obtain the exponential matrix:

5 (M1, isinh (0,4,
t+1

[U]cosh(€,,,y)

with
k. k, k2
- TWHR
M= T )
- WE; 1 B —“H
and

— 2 2 2
‘Qi+1"\/kx + kz TWMR, €4
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If we now follow expressions (31) and (33), it is found that

1
[g+ ]i,i ="
JOK,

_ 1.2 2
ki+o'u,, €.,

k k.

Kok, }
ki— 0’liy1€,4

. Q COth[Ql+1(ht+1_hi)] (42)
i+1
1
[g]z,z+1 =7
JO/ ;4
) _k§+w2IJ’l+1€l+1 kxkz
k.k, k2 — 0?1644

1csch[Q,Jrl(h,Jrl—h,~)] (43)
i+
these results being the same as those obtained in [16] for
the isotropic case.

It can be seen in the above expressions that the func-
tional dependence of the [g], , matrices in this simple
case and for certain other intrinsic anisotropic dielectric
layered configurations, as in [16], is mainly of the type
[g77],,~[K" " Jcoth{l K™~ 1} and [g],, ~[K]csch{[K]}
(j#1i). The 2X2) [K™ "] and [K] matrices depend on
the constitutive constant of the layer and show an alge-
braic dependence of the &k, and k., in such a way that, for
large k, and k, [g+’_]l.’l ~[K""]and [g], ; ~[0] G+
Similar behavior has been verified for the same matrices
in the more involved structures treated in this work for
large k, and k,.

From a detailed observation of (7)-(17), it can be said
that the procedure to obtain the [L]; ; matrices is essen-
tially a perturbative one. We can note, for example in (7),
that the [Llg , matrix shows a first-order dependence
with the [g]nK,nK matrix, namely the effect of the adjacent
layers to the metallized Kthi interface, and a dependence
of upper orders from the effect of the other layers. Thus,
the [L];, matrices show essentially the same type of
dependence implicit in the [g], ; matrices for large &,
and k,. This latter fact together with the perturbative
feature of the mentioned matrices will make the numeri-
cal behavior of the EBM well conditioned. This behavior
also avoids any numerical problems related to the increas-
ing number of layers.

On the other hand, we will also be able to predict the
asymptotic behaviour of the [L] L7 matrices on account of
its perturbative nature. So, we can say that [L]g x~
[g],, », and [L]g ; ~0. This asymptotic behavior can be
very useful when numerical integration involving elements
of the BSDGF is necessary.

B. Numerical Results

Some numerical data have been generated to show the
numerical efficiency of the present algorithm. As men-
tioned above, the poles of the BSDGF stand for the
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Fig. 7. Propagation constant for an asymmetrical ferrite-dielectric—
ferrite parallel-plate line with M =167.11 kA /m, M 4 =139.26 kA /m,
H,=15924 kA/m, €,=13.5, e, =2.6, e3=16, h; =15 mm. (B* for
hy=1mm, hy=3 mm; B° for b, =0 mm, h;=4 mm) (————~~ ) [24.

fig. 2(a)]; ( ) our results.
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Fig. 8. Differential phase shift and insertion losses for the drawn guide
with 4wM,=1780 G, H,=200 Oe, AH,=45 Oe, e =15, €,="96,
wy=wp=2mm. (—————- ) [25, figs. 2 and 3]; ( ) our results.

propagation characteristics of the different modes in a
multilayered planar guide without internal metallizations.
This fact has been taken into account to analyze the two
different guides, which are partially filled with ferrite and
are shown in Figs. 7 and 8 respectively. Two orientations
of the magnetizing field, H,, have been considered, show-
ing the data obtained to be in good agreement with the
previous theoretical data [24, fig. 2(a)], [25, figs. 2 and 3]
in both graphs. The dimensions and characteristics for
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Fig. 9. Differential phase shift of a coplanar waveguide with 4mM_ =

493 G, H,=0 Oe, ¢,=14.8, d=1.59 mm, #,=3.92 mm, w=1 mm,
s=1.6mm, W,—>w (4 A 4 a)[10, fig. 10]; ( ) our results.

both guides are detailed in the works cited. The CPU
time required to compute the BSGDF for a given value of
(k,,k,) was about 5 ms on a CONVEX-220 computer. If
for instance the Muller method for searching complex
zeros is employed, the total CPU time to obtain one
datum from Figs. 7 and 8 was typically 60 ms.

In addition, the algorithm treated here has been com-
bined with the Galerkin method to numerically determine
the dispersion relation when metallized interfaces are
considered. Our data (sce Fig. 9) are compared with
previous experimental data given in [10, fig. 10], showing
good agreement. We have simulated the structure there
analyzed by means of the opened configuration drawn in
Fig. 9. The perturbative nature of the elements of the
BSDGF has been used to compute the integrals involved
in the Galerkin method. A typical CPU time to generate
one accurate value of the Galerkin determinant was about
1 s (seven trial functions like those in [16] were used).

‘U[Q]i
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V. CONCLUSIONS

At this point, it is important to emphasize some of the
most relevant features of the EBM. We can enumerate
them as follows:

* The EBM is essentially based on the uniqueness and
equivalence electromagnetic theorems.

* It has been given a general algorithm to compute the
BSGDF for any planar structure including any num-
ber of layers or metallized interfaces and any type of
linear media.

* The complex general problem has been reduced to a
chain of much simpler single-layered problems, which
can be treated separately. These problems are solved
by means of the mentioned matrix scheme, and the
BSDGF is then built up by making use of the alge-
braic algorithms shown. By using this procedure we
deal only with (2 x2) matrices until that final inverse
matrix of the BSDGF is formed.

* The EBM actually provides the [ L] matrix, which is a
block tridiagonal matrix. This fact simplifies the cal-
culus if several metallized interfaces are involved.

* Important symmetry properties have been found to
the involved matrices for many practical cases. This
fact can make the determination of the BSDGF sim-
pler.

* The EBM shows a proper numerical behavior on
account of its perturbative nature.

The features and advantages mentioned above make
the EBM a very powerful method to numerically deter-
mine the BSDGF.

APPENDIX

If the ith layer shows both dielectric and magnetic
anisotropy, the characteristic tensor becomes

€17 €15 €43 0 0 0
€1 € €3 0 0 0
€3 €3, €33 0 0 0
M|, = Al
[ ] 0 0 0 i M M3 ( )
0 0 0 Moy Mz M3
L0 0 0wy pxp pa

and the (4x4) [Q], is, after all the algebraic manipula-
tions,

k. k, _ 3
—wpy topg gy

~ Wizt Opg o

WEHy WEH,
k? _ kxkz _
- T o~ opp iy T o3t Ol
WE,H, WEyy

- kxﬁm - kZE32 - kxﬁ23 - kxg3z

_kzﬁ_’«21+kz'§12 _kzl—lvn_ kx€12

o _ (A2)
with €, =¢,; /€y and ;= pu,, /1,;.
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