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A General Algorithm for Computing the

Bidimensional Spectral Green’s Dyad in
Multilayered Complex Bianisotropic Media:

The Equivalent Boundary Method
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Abstract —A systematic method to obtain the bidimensional

spectral dyadic Green’s function (BSDGF) of stratified planar
structures with arbitrary complex bianisotropic layers is devel-
oped. The method is based on the uniqueness and equivalence
electromagnetic theorems. A first-order partial differential for-
mulation for the electromagnetic field inside each layer is used.
An ~xplicit algorithm makes it possible to go from the single-layer
formulas to the general n-layer matrix formulation. The pertur-

bative nature of the method provides good numerical efficiency

and straightforward determination of asymptotic behavior.

I. INTRODUCTION

PLANAR layered structures have played a significant

role in microwave technology. This role is increasing

day by day thanks to the investigations of new configura-

tions (including different geometries or anisotropic sub-

strates) as well as to advances in material technology for

monolitic microwave integrated circuits (MMIC’S). The

increasing capacity and complexity of these MMIC’S re-

quire that the passive componeq$ be versatile [1], Printed

antenna problems involving stratified complex substrates

have also been a matter of particular attention in recent

years [2]. So, for design applications, it should be very

interesting to contemplate the possibility of treating a

very general planar system such as that shown in Fig. 1.
This structure supports lossless and infinitesimally thick

metallizations over several interfaces, and every layer can

present dielectric and/or magnetic anisotropy including

losses. The inclusion of very general anisotropic multilay-

ered substrate is justified because of the intrinsic or

extrinsic anisotropy of many of materials used as sub-

strates. The intrinsic anisotropy relates to the anisotropic

behavior of certain dielectric crystals (in the millimeter

and microwave frequency range), and the extrinsic
anisotropy is acquired when the optical activity is taken

into account or when semiconductors as well as ferrites
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Fig. 1. Transverse section of the multilayered planar structure under
study.

are biased by means of an external and static magnetic

field. It is very well known that an arbitrary orientation of

this biasing field makes all the elements of the dielectric

permittivity or/and magnetic permeability distinct from

zero.

The analysis of the electromagnetic field problem in

the configuration depicted in Fig. 1 becomes simpler if

the Fourier transformed domain (FTD)—or spectral do-

main—is used. This is mainly due to the fact that Green’s

function convolution integrals or series are turned into

algebraic products. Moreover, the spectral dyadic Green’s

function (SDGF) and the bidimensional spectral dyadic

Green’s function (BSDGF) can be obtained following a

straightforward systematic procedure, as will be shown in

this work. If vectors [J-] and [~] are assumed to be the

(x,z) spectral components of the surface currente and the
electric field on every metallized interfac~, the [G] matrix

(i.e., ~SDGF) will be here defined as [E]= [G] c[~] ~nd
the [L] matrix (i.e., the inverse of the BSDGF) as [J]=
[~]. [i]. Once the BSDGF is determined, we can follow

several methods (i.e., moment or iterative methods) to

state the nondeterministic dispersion relation for trans-

mission lines or the deterministic problem of the radia-

tion pattern for antennas. The main purpose of this paper

is to develop a general method (namely, the equivalent

boundary method, EBM) to determine the BSDGF for
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the general configuration of Fig. 1. The application of the

BSDGF to the analysis of particular structures and its

numerical treatment will be presented in future works.

Nevertheless some results are presented now for purposes

of comparison and in order to show the feasibility of the

method.

A large number of works can be found in the literature

dealing with the SDGF and BSDGF. We can highlight

the transverse transmission line method (TTL), proposed

in [3], in which an isotropic dielectric medium is analyzed

based upon the decomposition of fields into transverse

TE and TM modes. This method can be easily extended

to all the configurations which provide for two decoupled

equations relating current sources and fields: one for

transverse TE fields and another for transverse TM fields.

A uniaxial anisotropic dielectric with its optical axis per-

pendicular to the interfaces fulfills this condition [4]. The

studies [5], [6], and [7] follow partly this TE and TM (or

LSE and LSM) decomposition. This scheme is also fol-

lowed in [8] to obtain the BSDGF when the distribution

of electrical sources in the isotropic dielectric is tridimen-

sional. It is necessary to use a different approach in order

to analyze more general substrates such as uniaxial and

biaxial dielectric layers of arbitrary orientation, magne-

tized ferrites and semiconductors, and bianisotropic me-

dia. Most methods dealing with these media are based

upon the transverse propagation matrix scheme [9]–[11].

The method proposed in [9] has been found to be the

most general because it makes it possible to study config-

urations with bianisotropic media. Nevertheless, there is

no simple way to build up a general transverse propaga-

tion matrix algorithm to analyze general multilayered,

muhiconductor structures,

The equivalent boundary method (EBM), which is ex-

plained in this work, is a generalization of the method

proposed by certain of the authors in [12] to obtain the

SDGF. It is quite different from the TTL method and the

propagation matrix method. The EBM is able to deal with

any number of layers and any kind of linear substrate

(from the simplest isotropic dielectric to more general

bianisotropic 10SSY media). It will be shown that this

method leads to a compact algorithm very suitable for

programming. The algorithm also shows very stable nu-

merical behavior.

The EBM is partly based on the equivalence and

uniqueness theorems for electromagnetic fields [12]. One

of the main features of the EBM is that its “objective is to

obtain not the BSDGF but its inverse. This provides two

important consequences in relation to the electromag-

netic theorems mentioned above. First, the inverse of the

BSGDF will be a -block tridiagonal matrix. This fact,

together with its possible symmetry properties, can sub-

stantially reduce the computation time necessary to ob-

tain this matrix when metallizations on several interfaces

are involved. Second, it makes possible the reduction of

the multilayer problem to a chain of much simpler prob-

lems of just one layer. (In the quasi-TEM case, a very

similar approach can be used to determine the spectral

Ckeen’s function [18] -[20],) Some works, such as [13] -[16],

analyze this one-layer problem, In this work, a (4X 4)

matrix technique is used to solve the involved partial

differential equations. This technique was proposed in

[!7] and adapted to the FTD in [9].

II. BIDIMENSIONAL SPECTRAL DYADIC

GREEN’S FUNCTION

In this section, we will develop a method to obtain the

BSDGF for the general system depicted in Fig. 1. The [J.]

matrix will be expressed in terms of (2X 2) matrices

related to some single-layer problems which will be unam-

biguously formulated. Although the main features of this

procedure were developed in [12] by some of the present

authors, a brief exposition is necessary here for a goc}d

understanding of the method. The system depicted in Fig.

1 is composed by N bianisotropic layers with N – 1 inter-

faces and upper and lower boundary electric walls. Every

layer shows a linear constitutive relation between the

D, B and E, H vectors, which will be characterized by the

(6X 6) [A4]i matrix:

‘M]i=[l!tH:] ‘mi=m’J+’m’J)“)
This tensor is composed of four (3x 3) tensors: the elec-

tric permittivity tensor [Eli, the magnetic permeability

tensor [u],, andl the optical activity tensors [p], and [p’],.

M of the N – 1 interfaces show metallizations (references

to any layer or interface will be denoted by lowercase

subscripts and references to metallized interfaces will be

denoted by uppercase subscripts). It should be noted that

this structure is invariant when a translation is carried out

in the (x – z) plane. Thus, the spatial dyadic Green’s

function will show the following dependence with respect

to variables x and z: [G(x, x’, y, y’, z; z’)]= [G(x – x’,

y, y’, z – z’)] and hence the convolution products involv-

ing this function are turned into algebraic products in the

Fourier domain.

The uniqueness theorem for the electromagnetic field

[21] tell us that the electric field at any point within a

given boundary is completely known in terms of the

electric field distribution on that boundary and the sources
within it. Hence, in order to analyze the general configu-

ration of Fig. 1, we now consider just a part of this, which

is shown in Fig. 2. This is made because the above

tlheorem allows us to substitute all the effects of the rest

of the structure by knowing the electric field distribution

on the external metallized interfaces. From the applica-
tion of the uniqueness theorem to the configuration of

Fig, 2 and the linear constitutive relations of the sub-

strates, it follclws that the electric field at any point

between the (K – 1) and (K+ 1) metallized interfaces is

certainly determined in terms of the transverse electric

fields at these interfaces, Et ~- ~ and Et, ~+ 1, and the free

curr,ent sources on the metallized interface, JK.
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Fig. 2. Transverse partial view of Fig. 1 including just three metallized

interfaces.

We can also make use of the equivalence theorem [21]

to turn the electric boundary conditions at the (K – 1)

and (K + 1) interfaces into other equi~alerzt boundary

conditions. These equivalent boundary conditions are set

up by placing perfect conducting plates at the (K – 1) and

(K+ 1) interfaces and, on top of them, two sheets of

fictitious magnetic current ML= E,, ~ x n~ (L= K – 1,

K +1) [21]. The relation between Et, ~ and the sources

ikfL and JK must show the form of a sum of convolution

products [12] for linear media. If ML is substituted in

terms of Et, ~, we arrive at the following expression:

E,, K(x, z,y) =/m ~m [~(x–x’, z–z’, y)]K, K
—m —m

.J~(x’, z’, y)dx’dz’

+Jm/m[~(~-~r7z-z’jY) lK,K-l
—m —cc

.Et, K_l(x’, z’, y)dx’dz’

+/m/m[~(x-xrz-z’>Y)lK, K+,
—m —m

-Et,K+l(x’>z’, y)&’dz’ (2)

[L],, [L],, [0]
[L],l [L],, [L]23

[01 [~1,, [~1,,

[0] [0] [L]43

[0] [0] [0]

where [Fl~,~, [Dl~,~_,, and [Dl~,~+l are dyads which

depend only on the dimensions and characteristics of the

structure. Note that in (2), all the sources above the

(K+ 1) interface and below the (K --1) interface have
been replaced by equivalent fields (E,, ~+ ~ and E, ~_ ~) at

these interfaces. The systematic atmlication of thk m-ou-

erty of the electromagnetic field in linear media consti-

tutes the essence of the EBM.

The above expression suggests the use of the FTD in

order to achieve an algebraic expression. The two-dimen-

sional Fourier transform, i.e.,

f(kX, kZ, y) =/m /m f(x,z,y)ej(~x+~)d.xdz (3)
—cc—w

applied to the electromagnetic fields can be interpreted

as the decomposition of these fields into propagating

fields with a transverse propagation vector k,= (k., k=)~

(the superscript T denoting transpose). If expression (2) is

translated to the FTD via (3) and some algebraic manipu-

lations are carried out on the resulting algebraic vector

equation, we will be able to write the following expression

for the FTD free current source vector on the Kth

metallized interface:

~K(k.x, kz, Y)=[~(kx7~z, Y)] K, K-l”~t,K-l(~x3~ z?Y)

+[L(kx, kz, Y)] K, K”~t, K(k. >kz2Y)

.

+[~(k.. >kz>y)] ~,~+l”~t, ~+l(kx, kz>y)

(4)

[L]I,~ (1= K,.7 = K – 1, K, K + 1) being (2x2) matrices.

The effect of the rest of the electric fields is taken into

account by means of the other relations analogous to (4)

with K = 1 to M.

The above expression holds a physical interpretation

for the [L]I,~ matrices since these matrices relate the

transverse free current source J; on the ~th interface to

the transverse electric field ~J on the .lth interface when

the other two interfaces are assumed to be electric walls.

This fact is depicted in Fig. 3.

If we now express relation (4) over all the metallized

interfaces, we arrive at

[0] -
[0] -

[L]34 . . .

[L]44 . . .

[0] :

[0]
[0]
[0]
[0]

[L]MM

(5)

Note the block tridiagonal nature of the [L] (2iW X 2M)
matrix.

Equations- (4) and (5J do not show a direct coupling

between (JK) and (EL) for IL – KI >1. Therefore,

changes in the field at the (K +2) interface, for example,. . . .- .-
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Fig. 3. Configurations associated with (a) [L]K, ~, (b) [LIK, ~– ~, and

(c) [LIK,K+I.

do not have any effect on (jK), pr?vided that (~K+ ~)

remains constant, i.e., pr?vided that (JK+ ~) changes in the

exact amount to leave (E ,, ~+ ~) unchanged. This is not a

surprising fact since it is always possible to introduce a

current density (&+ ~) at the (K +1) interface to hold the

field (tit, ~+ ~) unchanged at this interface, regardless of
the fields and sources above that interface (equivalence

theorem, [21]).

If we are dealing just with slotlike structures, the re-

quired matrix is directly the [L] matrix. When other types

of structures are analyzed, [G] being the required matrix

now, it will be necessary to invert the [L] matrix. Never-

theless, on the one hand there are efficient computing

methods to invert tridiagonal matrices; on the other, the

computation of the [L ]1,~ matrices involves only calculus

concerning a minor number of layers (see Fig. 3) than the

original structure.

It should be noted that closed structures with rectangu-

lar boundary conditions could also be treated by using the

FTD techniques (together’ with the BSDGF shown in (5))

if this closed structure could be viewed as one period of a

bidimensional or tridimensional periodic configuration.

Fourier integral transforms should be also converted into

Fourier series transforms adapted to the new lateral

boundary conditions in the problem,

This treatment is possible in boxed structures if lateral
metallic sidewalls are perpendicular either to a main axis

of anisotropy, for intrinsic anisotropic dielectric layers, or

to the external biasing magnetization field, for gyrotropic

layers. Nevertheless, from a practical standpoint, all kinds

of layered boxed structures can be analyzed by using FTD

techniques if the sidewall effects are assumed to be ne-

glected.

From (5), we can see that the zeros (k,, k=) of the

determinant of the [L] matrix are associated with the

transverse propagation vectors of the different propaga-

tion modes in the whole structure in Fig. 1, without

metallizations at the internal interfaces. In the same way,

the poles of this determinant are associated with any of

the propagating modes at any of the substructures f~rmed

when the metallized interfaces are whole electric walls.

Propagation vectors in suitable boxed structures form a

E
y=hi+l —

t,i+l

I“li+l ,Ji
~

y=hi

[M],

Y=hi.l —
— %-l

lti43

(i+l)-th interface

(i)-th interface

(i-l )-th interface

Fig. 4. Two-layer configuration.

discrete subset of the continuous bidimensional spectrum

associated with the corresponding open structure.

A. Computation of [L~, ~

As mentioned in the previous section, the computation

of the [ L]I, ~ matrices is related to the analysis of the

configurations drawn in Fig. 3. These structures will be

the subject of Ibis subsection. If we now follow an analo-

gous procedure for one of these configurations, as was
followed with the previous general system, this will lead

to the relevant fact that our current problem can be

formulated by means of some new (2X 2) [g ]i, j matrices

which will be associated with problems of just one and

two layers. The analysis of the configurations of Fig. 3,

when the merltioned procedure is carried out [121, is

therefore reduced to the analysis of the simpler two~layer
structure depicted in Fig. 4, The following identity, simi-

lar to (4), is obtained:
.

~=[g]~, ~-l” fi~,i-l +[g]~,~” E~,i+[g]~, i+l” E~, i+l - ((5)

Equation (6) relates the possible free current sources ~

at the ith interface to the transverse electric fields at that

interface and the adjacent ones. We can associate a

physical significance to these [g]i,, (j= i – 1, i, i + 1) in a
similar way to that carried out in the preceding section for

the [L]{, ~ matrices. By doing this, the problem of the

general system will have been essentially simplified, This
fact will make it possible to deal with the general system

regardless of the number and distribution of layers and

metallizations. The computation of the [g ]i,l matrices will

be the aim of the next section.

In order to compute the [L]l,J, assuming that the [g],, j

have been obtained, we will have to carry out a tedious

but straightforward procedure. This procedure is devel-

oped by using (6) to eliminate the transverse electric field

at the ith interface when this interface is not metallized,

i e., ~ = O. After some algebraic manipulations, the fol-

lowing identity is obtained:

[L] K>K=[A]~+[B]& -[g].K,.x (’7)

[L] K, K_l=[C]~ (’8)

[L] K-,K+l=[D]~ (9)

nK being the number of layers underneath the Kth inter-

face, n~ = nK – nK_l, and n’; =nK+l – nK. The above

identity is built up by means of the following recurrence
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Fig. 5. (a) Two-layer configuration associated with [g],,,. Single-laYer

configurations associated with (b) [g]j, L+~and (c) [g],,, _~.In (b) and (c),

J, is the surface free current source m the conductors.

algorithm:

electric wall
(i+l) interface

[Ml,+,

Et.i
Ht ,+l(hi)

-
(i)-th interface

(a)
Et i

- (i)-th interface

Htj(hl)
[M]i

(i-l )-th interface

(b)

Fig. 6. Single-layer configurations associated with (a) [g+ ],,, and

(b)[g- l,,,.

[Alk=[glp+l,p+l (lo)
interface. So, we can express the free current source at

[~]i=[glq-1,q-1 (11)
the ith interface by means of

[clk=[glP+l,ll (12) i=[zl”(z,i+l(wf i,.i(o) (21)

[~l&=[gl*-l,C? (13) with [T] = ( _~ ~). We can therefore decompose the

[~]~=[g]p+j,~+j -[glp+j.p+j-l ([ A]~-l)-’
[g]l,i matrix into two matrices associated with the single-

layer problem (see Fig. 6) in such a way that

“[glP+l-l>P+J (14)
[glL>L= [g+lz,l+[g-]L,L. (22)

[B]i=[g],-l,q-z -[g]q-z.q-z+l ([ B]~-l)-l
These matrices can be interpreted as follows:

“[g]q-z+l,q-i (15)
ti,,i=l(hL) =[T]-l” ([g+li,L ”~,,l)ljt,,+l=o (23)

[C]i=-[g]p+,,p+,-l @i]~-l)-loIC]j-l (16)

E,,,(I2J =[T1-l” ([g- it,&,Jit,L_l=o. (24)

[D]~=-[g]q-,,q-z+, .([B]:-1)-’[D]2-1 (17)

From (23) and (24), we can see that these [g+ ]Z,i and
with p=nK_l, q=nK+l, .i =2,. ”., n’K, andi =27...,&’&

Note that all the above expressions are made up by means
[g- ],,, matrices are actually the admittance matrices re-

ef algebraic operations of the (2x 2) [g],, j matrices. We
Iating the transverse electric to the magnetic fields at the

can now build the tridiagonal block matrix [L] of (5) once
ith interface in the structures shown in, respectively, parts

(a) and (b) of Fig. 6.
all the [L]I, ~ matrices are obtained.

B. Reduction to single-layer problem

The computation of the (2X 2) [g]i,J matrices is better

understood if each matrix can be interpreted as

Z=[dv+l”%+lli,, [=o. (20)

Following (18)–(20) we can explicitly depict the structure

associated with each [g],,, matrix. It can be seen in Fig. 5

that we now have, on the one hand, two problems of one

layer with one electric wall and, on the other hand, one

problem of two layers with two electric walls. However,

the two-layer problem can be decomposed into two prob-

lems of one layer and ‘one electric wall, as suggested by

the application of the boundary conditions at the ith

III. ANALYSIS OF [g],,, MATRICES

In this section the computational method for obtaining

the [g],,] matrices of the preceding section will be devel-

oped. We will also analyze the properties of these ele-

mentary matrices for the more common cases, in which
the layer is either reciprocal or lossless. Some considera-

tions will be finally made on the main numerical features

of the method proposed here.

A. Computation of [g~, ~ Matrices

At this point, it is obvious that all the problems have

been reduced to find the relations between the transverse

electric and magnetic fields in a configuration with just

one complex bianisotropic layer. In order to solve it, we

will follow a (4x 4) matrix scheme similar to that adapted

to the FTD in [9]. When a time harmonic dependence

exp (jo t ) of the fields is assumed, we can write the
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second and fourth Maxwell’s equations for the ith layer

as

with

[SZ?](3X3)

Ei =

and

i,

Hi1

-[dlt -[/JIL”

[6], [PI,

o jkz

– jkz O

8
——

dy
– jkx

(6X 6)

d

dy

jkx

o

%,i(~x,kz,y)

fry,i(kx,kz, y)

~z,, (hk., y)

~x,i(hk,,y)

fiy,,(kx,k., y)

%i(kx,kz,y)_

El

Hz
(25)

Hi=

We can eliminate the Y components of the E,, X, fields

by operating in the second ‘and fifth rows of (25) on

account of the algebraic nature of these rows. Once this

has been carried out, the following first-order matrix

equation of rank 4 is obtained:

( }
[U]~-jti[Q], X,=O (26)

with [u] being the (4x 4) unity matrix, [Qli the (4X 4)

matrix resulting from all the algebraic manipulations, and

X, = [~X,~~Z, ~fiX, ~fiz,, ]~. All the elements of the [Q]j ma-

trix are shown in the Appendix for the common case of

dielectric and magnetic anisotropy. In [9] an analogous

matrix is shown for the general case. The solution of (26)

is a vector which can be written as

Xi(y) =exp(jw[Q],y)” XO,, (27)

where XO, is a constant vector to be determined accord-

ing to the boundary conditions and exp (jo[ Q]i Y) is a

(4x 4) matrix which can be related to the eigenvalues and

eigenvectors of [Q]i by means of the Cayley–Hamilton

theorem. As can be noted from (27), we can express the

electromagnetic field at any y plane in terms of the field
at another y’ plane. Thus, we can write at the (i + 1) layer

that

xi+l(h,+l) =em(jo[Q]i+l(~, +i–~t))”xi+l(~t)

‘[pli+l’xi+l(ki) (28)

and from the properties of the exponential matrix that

]f, +l(h,) = [R],.Fl” Xi+l(hl+l), with [Rli+l = [l’],~ll. We

now have to take into account the boundary conditions

for the single-layer configurations of Fig. 5(b) and (c) and

Fig. 6(a) and (b) in order to determine the relation

between currents and fields. In case we are interested in

computing [g+ 1,,,, (28) can be rewritten as

[;:j;:;]=[

1[ I

[Pllli+l [P121z+I . ~t,t+l(hl)

[~211t+l [~221t+l H,,z+l(hi)

(i])

where [Pi, j], + ~ denotes one of the four (2x 2) matrices in

which the (4x 4) [P], + ~ matrix is split. Since Et, i+ ~(ht + ~)

= O (see Fig. 6(a)), we obtain

Ii,,i+l(ht) = –{([~121L+l) ‘l[pll]z+l)~t,j+ l(ki) (30)

and following (22) and (23), [g+ ]i, , is already determined.

If the necessary operations are carried out for the other

single-layer configurations, we reach

[g-l,, t=[~l”[([~,21i) -’’[&llJ (31)

[f?+lt,l =-[~l”[([plzll+ l)-’”[%lz+l] (32)

[gli,i+ l=[~l”([p121i+l)-1 (3:3)

[glt,i-l= -[~l”([~121z)-1- (34)

Once these matrices are obtained, we can easily follc~w

the algorithms shown in (7)–(17) in order to build up the

inverse or the IBSDGF.

B. Properties Ojf [g~, j Matrices

Since the cc~mplex general problem has been formu-

lated in terms of several simpler single-layer problems, we

can now take into account the symmetry properties of the

characteristic tensor of each layer to state the properties

of the (2X 2) corresponding [g], ~ matrices. We will shclw

these properties when the invol~ed layers are assumed to

be reciprocal or lossless. For example, in order to find the

properties of the [g],,, _ ~ and [g ]i _ ~,, matrices, we will

first analyze an N-layer configuration similar to. that

(iepicted in Fig. 1. But we now consider that this configu-

ration does not show internal metallized interfaces and

the ith layer is assumed to be reciprocal [22], i.e., [e]i =

[cl~, [~]i = [PI;, and [p’], = – [ply. This case includes the
common intrinsic electric and/or magnetic anisotropy but

not gyrotropic effects. The reciprocity theorem [22] for
such a configuration can be written for two different free

current sources and electric fields inside the ith layer as

j~[~j(r)x~t(r)- ~,(r)x~j(r)]ds,

=JQ[E(r)J’(r)-E’(r)J(r) ]dV (35)
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with the surface integrals extended over the ith and When the characteristic tensor [M,] is assumed to be

(i – 1) interfaces limiting the ith layer and the volume Hermitian, i.e., for lossless layers, the reciprocity theorem

integral extended over the whole ith layer. We now is not (35) but it is given in [231. We can follow an

choose the same current and electric field of Fig. 5(c) for analogous procedure to state the properties of any other

l(r) and E(r) and the current and electric field of Fig. matrices related to the single-layer configurations (any of

5(b) for the case where the (i+ 1) layer is replaced by the these matrices will be generically denote by [P I,,,, (~= i –

ith layer for Y(r) and E’(r). Taking into account 1, i, i + l)). If this is carried out, we will find that

[P(~x>~z?Y)lw=
{

[P(-kx, -kz, Y)]:t if the involved medium is reciprocal

-[ P(kJ., y)];.i if the involved medium is lossless.

(40)

the boundary conditions imposed by the electric walls

(E,(Y = h,) = O; ti~(y = h,-,) = O), expression (35) be-
comes

with the integrals extended to all the points at the ith and

(i – 1) interfaces. If the following identity is considered

{f(-L-~z, Y)}*= ~{ f*(Lz>Y)} (37)

(~” denoting conjugate complex of ~ and & the Fourier

transform), once Parseval’s theorem is applied to (36), we

obtain

/m/mEt,i(kxkz,y)Z(-k.,-k zy)dkxdkz—.—.
w.

—

-/ /
Ej,i-l(kx>kz>y)

—m —m

“&_l(–kx,–kz,y)dk. dk,. (38)

If the free current sources are now expressed in terms

of the electric field by means of the ~reviously defined

These properties are easily transposed to the [L]I,J and

BSDGF matrices when the substrates involved in the

computation of these matrices show the same properties.

The symmetries provided by these properties can signifi-

cantly reduce the necessary work to compute the BSDGF.

It can also be very useful in applications of the BSDGF

which imply numerical integrations.

IV, RESULTS

A. Theoretical and Numerical Considerations

We are now interested in obtaining [g],, j matrices in

the simplest case, i.e., the isotropic dielectric layered

configuration. If the present procedure is followed, the

first step to take is the calculus of the exponential matrix

exp (.iaJQl, + 1y). It can be observed in the Appendix for
this simple case that

[P]i+l(y) =exp(j~[Q], +ly),

with

[

[0]
[Q]i+l= ~Q2,1+1

[Q121i+1

1[0] “
(41)

1 (4x 4)

The presence of these two zero submatrices in [Ql,-, ,.
matrices (eqs. (18)–(20) and (22)), we will rewrite (38) as makes it very easy to obtain the exponential matrix

I

[Ulcosh(f?+,y) &[ M], +lsinh(fli+ly)

[l’],+,(y)= ~
C+l

~[M],-~lsinh(fl, +ly) [U]cosh(fl+,y)
1

L

/mJm~t(kx7kz>Y)[[ ~(-k.>-kz,Y)]i,,_l
—cc —m

with

“fit,l_l(-kx, -kz, y)] dkxdkz

.
—
-J J

‘tit, j_l(kx, k.>y). [[g(-kx, -kz, y)], -l,,

[M],+,(Y) =

i:i;:kx, –kz, y)] dkxdkz

m
——

JJ
‘~f,,_l( -kx,-kz,y ).[[g(kx,kz,Y )]i-~,z

—w —’x

“fit, z(kx,kz, y)] dkxdkz. (39) and

The above identity yields that [g( – kx, – k,, y)]i _ 1,, =

[g(kx> kz> Y)]:, -I- Qj+l= k:+k:–co2p, +1~L+1



MESA et d: GENERAL ALGORITHM FOR COMPUTING BIDIMENSIONAL SPECTRAL GIREEN’S DYAD 1647

If we now follow expressions (31) and (33), it is found that

[g+],,, . A
j~Pz+l

“[

–~; +@2/.%+l~z+l kxk=

kxkz k; – U2Pi+lq+l 1
.:coth[~,+l(~,+l–~i)](42)

1+1

[L1+l=-~
~“P’i+l

“[

–k:+o)2p1+1ez+1 kxkz

kxkz k: – tizpi+lei+l 1
“&csch[Q,+l(~,+l–~i)](43)

1+1
these results being the same as those obtained in [16] for

the isotropic case.

It can be seen in the above expressions that the func-

tional dependence of the [g], ~ matrices in this simple

case and for certain other intrinsic anisotropic dielectric

layered configurations, as in [16], is mainly of the type

[g+’- l,>c- [K+’ -]coth{[K+’-]} and [g],, =[K]csch{[K]}

(j+ i). The (2X 2) [K+> - ] and [K] ma~rices depend on

the constitutive constant of the layer and show an alge-

braic dependence of the k, and k, in such a way that, for

large kx and k=, [g+’ - 1,,, NIK+’-I and [gll,j -[0] (j# z).
Similar behavior has been verified for the same matrices

in the more involved structures treated in this work for

large kx and k=.

From a detailed observation of (7)–(17), it can be said

that the procedure to obtain the [ L]I, ~ matrices is essen-

tially a perturbative one. We can note, for example in (7),

that the [LIK, ~ matrix shows a first-order dependence

with the [g].K,.K matrix, namely the effect of the adjacent

layers to the metallized Ktli interface, and a dependence

of upper orders from the effect of the other layers. Thus,

the [L]I, ~ matrices show essentially the same type of

dependence implicit in the [g],, j matrices for large k,

and k=. This latter fact together with the perturbative

feature of the mentioned matrices will make the numeri-

cal behavior of the EBM well conditioned. This behavior

also avuids any numerical problems related to the increas-

ing number of layers.

On the other hand, we will also be able to predict the

asymptotic behaviour of the [L ]1,~ matrices on account of

its perturbative nature. So, we can say that [L IK, ~ =

k] .K, .K and [ L]K, ~ -0. This asymptotic behavior can be

very useful when numerical integration involving elements
of the BSDGF is necessary.

B. Numerical Results

Some numerical data have been generated to show the

numerical efficiency of the present algorithm. As men-

tioned above, the poles of the BSDGF stand for the

0.4r~i—I , I , 1
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Fig. 7. Propagation constant for an asymmetrical ferrite–dielectric-

ferrite parallel-plate line with M,l = 167.11 kA/m, MJ3 = 139.26 M/m,
HO= 159.24 !#@, ●1 = 13.5, q = 2.6, .s3= 16, hl = 1.5 mm. (/3” for
;12 = 1 mm, h~ = 3 mm, /3b for hz = O mm. h~ = 4 mm) (------) U4.
fig. 2(a)]; (— ) our results.
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Fig. 8. Differential phase shift and insertion losses for the drawn guide
with 4mM, = 1780 ~, Ho = 200 Oe. AffO = 4.5 Oe, ef = 15, Ed = 96,
Wd= Wf = 2 mm. (--–––––) [25, figs. 2 and 3]; ( —) our results.

propagation characteristics of the different modes in a

multilayered PI anar guide without internal metallizations.

This fact has been taken into account to analyze the two

different guides, which are partially filled with ferrite and

are shown in F~igs. 7 and 8 respectively. Two orientations

of the magnetizing field, HO, have been considered, show-

ing the data obtained to be in good agreement with the

previous theoretical data [24, fig. 2(a)], [25, figs. 2 and 3]

in both graphs. The dimensions and characteristics for
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s=l.6 mm, Wo+m(AAAA)[lO, fig. 101; (—) our results.

both guides are detailed in the works cited. The CPU

time required to compute the BSGDF for a given value of

(kX, k=) was about 5 ms on a CONVEX-220 computer. If

for instance the Muller method for searching complex

zeros is employed, the total CPU time to obtain one

datum from Figs. 7 and 8 was typically 60 ms.

In addition, the algorithm treated here has been com-

bined with the Galerkin method to numerically determine

the dispersion relation when metallized interfaces are

considered. Our data (see Fig. 9) are compared with

previous experimental data given in [10, fig. 10], showing

good agreement. We have simulated the structure there

analyzed by means of the opened configuration drawn in

Fig. 9. The perturbative nature of the elements of the

BSDGF has been used to compute the integrals involved

in the Galerkin method. A typical CPU time to generate

one accurate value of the Galerkin determinant was about

1 s (seven trial functions like those in [161 were used).

(w[Q]j

V. CONCLUSIONS

At this point, h is important to emphasize some of the

most relevant features of the EBM. We can enumerate

them as follows:

●

●

●

●

9

●

The EBM is essentially based on the uniqueness and

equivalence electromagnetic theorems.

It has been given a general algorithm to compute the

BSGDF for any planar structure including any num-

ber of layers or metallized interfaces and any type of

linear media.

The complex general problem has been reduced to a

chain of much simpler single-layered problems, which

can be treated separately. These problems are solved

by means of the mentioned matrix scheme, and the

BSDGF is then built up by making use of the alge-

braic algorithms shown. By using this procedure we

deal only with (2x 2) matrices until that final inverse

matrix of the BSDGF is formed.

The EBM actually provides the [L] matrix, which is a

block tridiagonal matrix. This fact simplifies the cal-

culus if several metallized interfaces are involved.

Important symmetry properties have been found to

the involved matrices for many practical cases. This

fact can make the determination of the BSDGF sim-

pler,

The EBM shows a proper numerical behavior on

account of its perturbative nature.

The features and advantages mentioned above make

the EBM a very powerful method to numerically deter-

mine the BSDGF.

APPENDIX

If the ith layer shows both dielectric and magnetic

anisotropy, the characteristic tensor becomes

[M], =

~11 ~12 ~ 13 000

’521 .522 ’23 000
●31 ’32 ●33 000
00 0 Wll P12 P13

I000 P21 ~22 ~23
00 0 P31 ~32 ~33,

(Al)

and the (4x 4) [Q]l is, after all the algebraic manipula-

– kx~23 – kxz32

– kzj123 – kxZ12

with ?,j = c,j/e22 and ~il = p,l/p22.
(A2)
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